POLIMORFISMOS DE 13 MICROSATÉLITES EN UNA LINEA SELECCIONADA DE CONEJOS.

INTRODUCCIÓN

La identificación de marcadores genéticos suficientemente polimórficos en una especie facilita la elaboración del mapa genético, así como la identificación de un individuo, de una población o quizás la detección de QTL's. De los 157 microsatélites localizados en genes de ADN nuclear detectados en el banco de secuencias nucleótidas de conejo de EMBL por van Lith y Zutphen (1996), 13 han sido descritos por van Haeringes et al. (1996) y otros 18 han sido localizados y desarrollados a partir de la construcción de una genoteca de pequeños fragmentos de restricción obtenidos de ADN de estirpes salvajes de *Oryctolagus cuniculus* (Mougel et al., 1997; Surridge et al., 1997). Los estudios realizados con algunos de estos marcadores se han dirigido fundamentalmente a estudios evolutivos y de caracterización de razas de esta especie (Monnerot et al., 1996).

En los trabajos realizados el número de alelos por marcador oscila entre 2 (locus Lap7) y 15 (locus Sol33) presentando la mayor parte de ellos una frecuencia alélica entre 0,14 y 0,25 (4-7 alelos por marcador).

El objetivo del presente trabajo es evaluar la diversidad alélica de 12 de estos marcadores genéticos sobre individuos de una línea seleccionada de conejo.

MATERIAL Y MÉTODOS

Se utilizaron 22 conejos machos pertenecientes a la línea R de la U.P.V.. La extracción del ADN se realizó a partir de fragmentos de oreja mediante el kit QIAmp (QIAGEN). La amplificación se llevó a cabo en una mezcla de $10\mu l$ que contenía en torno a 20ng de ADN, $1\mu M$ de cada cebador, $100\mu M$ de dGTP, dCTP, dTTP, y $5\mu M$ de ATP, $0,04\mu l$ de dATP- $P^{\alpha33}$ a $3,7*10^{13} Bqmmol^{-1}$, 75mM de tampón TRIS-HCl (Promega), 1 a 1,5 mM de Cl_2Mg y 0,2 u de Taq-polimerasa (Promega).

Las condiciones de amplificación de cada uno de los microsatélites se describe en la Tabla 2. La extensión final de cada una de las amplificaciones fue de

10 minutos a 72ºC. El ADN amplificado fue mezclado con 3• I de solución stop y calentado a 95ºC durante 5 minutos antes de cargar un gel desnaturalizante al 6% de poliacrilamida.

Tabla 1. Microsatélites utilizados y nº Tabla 2. Condiciones de amplificación de de alelos observados (van Haeringes los microsatélites. et al. 1996, Mougel et al., 1997; Surridge et al., 1997).

Locu	Origen	Nº	Nº de	Tamaño	Locus	Cl₂Mg/PCR	Ciclo		
s		EMBL	alelos	(pb)					
Sat2	α _{s1} -	M77195	4	251-253	Sat2	1,0 mM	(94°C-30s/55°C-30s/72°C-30s)*36		
	Caseína								
Sat3	Mielina P ₂	J03744	7	146-162	Sat3	1,5 mM	(94°C-30s/60°C-30s/72°C-30s)*30		
Sat4	α-Caseina	M33582	5	195-240	Sat4	1,0 mM	(94°C-30s/60°C-30s/72°C-30s)*30		
Sat5	Clon	X99887	6	206-234	Sat5	1,0 mM	(94°C-30s/60°C-30s/72°C-30s)*30		
Sat7	Clon	X99888	6	183-195	Sat7	1,5 mM	(94°C-30s/60°C-30s/72°C-30s)*30		
Sat8	Cion	X99889	4	136-158	Sat8	1,0 mM	(94°C-30s/60°C-30s/72°C-30s)*30		
Sat12	Clon	X99891	4	122-138	Sat12	1,0 mM	(94°C-30s/55°C-30s/72°C-30s)*30		
Sat13	Clon	X99892	5	114-128	Sat13	1,0 mM	(94°C-30s/55°C-30s/72°C-30s)*36		
Sat16	Clon	X99890	3	109-115	Sat16	1,5 mM	(94°C-30s/55°C-30s/72°C-30s)*30		
Sol33	Clon	X94683	15	189-219	Sol33	1,0 mM	(94°C-30s/52°C-30s/72°C-30s)*35		
Sol44	Clon	X94684	9	178-208	Sol44	1,0 mM	(94°C-30s/62°C-30s/72°C-30s)*35		
Lap5	MAE	-	5	112	Lap5	1,0 mM	(94°C-30s/61°C-30s/72°C-30s)*30		
Lap6	ANA		6	240	Lap6	1,0 mM	(94°C-30s/61°C-30s/72°C-30s)*30		

MAE: Molécula 1 de adhesión endotelial.

AN-A: Arilmanina N-acetiltransferasa.

RESULTADOS Y DISCUSIÓN

El número de alelos y su frecuencia en los microsatélites evaluados para la línea R (Tabla 3) fue menor que los observados en las estirpes de conejo silvestre que sirvieron para la puesta a punto de estos marcadores y ligeramente inferior a la observada en diferentes razas de conejo (Bolet *et al.*, 2000). El número medio de alelos para los 9 microsatélites (Sat2 a Sat16) en razas como el Gigante de España, la liebre Belga o el Gigante de Flandes es similar a la obtenida en la línea R (3,2) y ligeramente inferior al Blanco de Viena (4,2) frente al conejo silvestre en España (9,1; Vachot, 1996). Los marcadores Sat5, Sol44 y Lap6 no muestran ninguna variabilidad (un sólo alelo de 228, 210 y 232 pb, respectivamente) y sobre todos los marcadores Sol33 y Sol44 evaluados en poblaciones de conejo silvestre en Gran

Bretaña con un elevado número de alelos (9 y 15) tan sólo presentan en la línea R 2 y 1 alelo respectivamente.

Por lo tanto, la diversidad genética derivada del uso de estos marcadores es muy baja y dificulta su utilización dentro de esta línea seleccionada.

Tabla 3. Número y frecuencia de los alelos observados.

Sat3	Sat12	Sat4	Sat7	Sat8	Sat13	Sat16	Sol33	Lap5
Alelo-Fr	Alelo-Fr	Alelo-Fr	Alelo-Fr	Alelo-Fr	Alelo-Fr	Alelo-Fr	Alelo-Fr	Alelo-Fr
164-0.023	134-0.182	241-0.409	195-0.068	156-0.205	128-0.400	113-0.046	214-0.841	120-0.796
162-0.364	130-0.409	238-0.364	191-0.500	140-0.409	120-0.550	111-0.159	207-0.159	110-0.204
158-0.023	126-0.273	195-0.227	183-0.432	136-0.386	114-0.050	109-0.796	-, -	
150-0.059	122-0.136						_	
	Alelo-Fr 164-0.023 162-0.364 158-0.023	Alelo-Fr Alelo-Fr 164-0.023 134-0.182 162-0.364 130-0.409 158-0.023 126-0.273	Alelo-Fr Alelo-Fr Alelo-Fr 164-0.023 134-0.182 241-0.409 162-0.364 130-0.409 238-0.364 158-0.023 126-0.273 195-0.227	Alelo-Fr Alelo-Fr Alelo-Fr Alelo-Fr 164-0.023 134-0.182 241-0.409 195-0.068 162-0.364 130-0.409 238-0.364 191-0.500 158-0.023 126-0.273 195-0.227 183-0.432	Alelo-Fr Alelo-Fr Alelo-Fr Alelo-Fr Alelo-Fr Alelo-Fr 164-0.023 134-0.182 241-0.409 195-0.068 156-0.205 162-0.364 130-0.409 238-0.364 191-0.500 140-0.409 158-0.023 126-0.273 195-0.227 183-0.432 136-0.386	Alelo-Fr Alelo-Fr Alelo-Fr Alelo-Fr Alelo-Fr Alelo-Fr Alelo-Fr 164-0.023 134-0.182 241-0.409 195-0.068 156-0.205 128-0.400 162-0.364 130-0.409 238-0.364 191-0.500 140-0.409 120-0.550 158-0.023 126-0.273 195-0.227 183-0.432 136-0.386 114-0.050	Alelo-Fr	Alelo-Fr

Alelo-Fr: tamaño del alelo en pares de bases y frecuencia observada.

AGRADECIMIENTOS

Los autores agradecen los consejos y ayuda técnica de la Dra. M. Monnerot y N. Dennebouy del CNRS de Gif sur Yvette.

Este estudio ha sido financiado por el proyecto de CICYT AGF98-0470.

BIBLIOGRAFÍA

Bolet, G.,Brun, J.M., Monnerot, M. y col. 2000. Evaluation and conservation of european rabbit (*Oryctolagus cuniculus*) genetic resources. First results and inferences. WII World Rabbit Congress, Vol A: 281-316.

Monnerot, M., Loreille, O., Mougel, F., Vachot, A.M., Dennebouy, N., Callou, C., Vigne, J.D. 1996. The European Rabbit: wild population evolution and domestication. VI World Rabbit Congress, Vol 2: 331-334.

Mougel, F., Mounolou, J-C, Monnerot, M. 1997. Nine polimorphic microsatellites loci in the rabbit., *Oryctolagus cuniculus*. Animal Gentics 18: 58.

Surridge, A.K., Bell, D.J., Rico, C., Hewitt, G.M. 1997. Polymorphic microsatellites loci in the European rabbit (*Oryctolagus cuniculus*) are also amplified in other lagomorph species. Animal Genetics 28: 302-305.

Vachot, A.M. 1996. Homologies et singularités interspecifiques et intraspécifiques. Tesis Doctoral, Universidad Paris XI Orsay.

Van Haeringes, W. A., den Bieman, M., van Zutphen, L.F.M., van Lithz, H.A. 1996. Polymorphic microsatellite DNA markers in the rabbit (*Oryctolagus cuniculus*). J. Exp. Anim. Sci 38: 49-57.

Van Lithz, H.A., van Zutphen, L.F.M. 1996. Characterization of rabbit DNA-microsatellites extracted from the EMBL nucleotide sequence data base. Animal Genetics 27: 387-395.