RESPUESTA AL ESTRÉS DEL RETÍCULO ENDOPLÁSMICO CELULAR: NUEVOS BIOMARCADORES DE CARNES DFD

González-Blanco^{1,2}, L., Diñeiro^{1,2}, Y., García¹, M.J., Sierra^{1,2}, V., Coto-Montes^{2,3}, A. y Oliván^{1,2}, M. ¹Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA) Ctra. AS-267, PK19, 33300-Villaviciosa, España. ²Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011-Oviedo, España. ³Dpto. Morfología y Biología Celular, Universidad de Oviedo, Av. Julián Clavería, 6, 33006-Oviedo, España; Igblanco@serida.org

INTRODUCCIÓN

En el ganado vacuno, el estrés pre-sacrificio da lugar a la aparición de carnes defectuosas (DFD) relacionadas con un mayor estrés oxidativo celular (Díaz *et al.*, 2020). El estrés celular altera el funcionamiento del retículo endoplásmico (RE) impidiendo que las proteínas se plieguen adecuadamente. Esta situación activa una cascada de señalización intracelular denominada Respuesta a Proteínas Desplegadas (*Unfolded Protein Response*, UPR) mediante tres vías (ATF6α, *Activating Transcription Factor 6α*; IRE1α, *Inositol-Requiring Enzyme 1α* y p-eIF2α, *Phosphorylated Eukaryotic Translation Initiation Factor 2α*) que, a su vez, regulan autofagia y apoptosis y, por tanto, pueden influir en la calidad de la carne (Fuente-García *et al.*, 2019). El objetivo de este trabajo es estudiar la activación de la UPR en carnes de calidad normal y DFD, con el fin de detectar biomarcadores tempranos para la detección de carne con defectos de calidad.

MATERIAL Y MÉTODOS

Un total de 12 canales de la raza Asturiana de los Valles fueron clasificadas como carnes "DFD" extremas (pH $_{24}$ > 6.2). Por cada canal DFD se seleccionó una canal control de características similares (peso, edad, origen, transporte) y pH $_{24}$ normal (5.4-5.6). Se extrajeron 20 g del músculo *Longissimus dorsi* a las 24 h *post-mortem* cuya fracción sarcoplásmica se obtuvo siguiendo el protocolo descrito por Oliván *et al.* (2018). La determinación de los cambios de expresión de los marcadores involucrados en la respuesta al estrés del RE (ATF6 α , IRE1 α y p-eIF2 α) se realizó mediante Western-Blot. Las diferencias entre carnes control y DFD se analizaron mediante Test T de muestras independientes (SPSS v. 22).

RESULTADOS Y DISCUSIÓN

En las carnes DFD la respuesta al estrés del RE fue más intensa, mostrando mayor expresión (unidades de densidad óptica) de IRE1 α (3449 vs 100, P < 0.001) y p-elF2 α (141 vs 100, P < 0.01); sin embargo, para ATF6 α , no se encontraron diferencias significativas (103 vs 100). IRE1 α está implicada en la degradación de proteínas mal plegadas y p-elF2 α en la detención de la síntesis proteica, lo que en conjunto trata de aliviar el estrés del RE. Estos resultados muestran un mayor estrés en el RE de las carnes DFD a las 24 h post-mortem, lo cual provoca un incremento en la activación de la UPR, asociada con un proceso autofágico más intenso (Yorimitsu et al., 2007). Estudios previos demostraron a su vez, que una autofagia más acentuada en carnes DFD a las 24 h post-mortem podría retardar el inicio de la apoptosis y provocar un proceso de tenderización anómalo (Díaz-Luis et al., 2020). Los resultados de este trabajo evidencian la posibilidad de utilizar la combinación de marcadores implicados en autofagia y en la respuesta al estrés del RE como biomarcadores tempranos de calidad de la carne.

CONCLUSIÓN

La carne DFD asociada con mayor estrés al sacrificio mostró una mayor activación del mecanismo de defensa del RE, conocido como respuesta a proteínas desplegadas (UPR). Las proteínas implicadas en dicho proceso podrían utilizarse como biomarcadores tempranos de calidad de carne.

REFERENCIAS BIBLIOGRÁFICAS

Díaz, F. 2020. J. Proteomics 218: 103722.
Díaz-Luis, A. 2020. ITEA 117: 3-18.
Fuente-García, C. 2019. J. Proteomics 198: 59-65.
Oliván, M. 2018. Meat Sci. 141: 81-90.
Yorimitsu, T. 2007. Autophagy 3: 160-162.

Agradecimientos: Al proyecto RTI2018-096162-RC21 (MCIU, AEI y FEDER). Laura González Blanco agradece al MCIU la financiación de su contrato (PRE2019-091053).